Electrical Design and Wiring for FIRST Robotics Competition ### Information Presented by: - Spenser Adams - Lee Arms - Gina Sweet - Russ Sweet - Team #67 Electrical Mentor/Teacher - Team #67 Electrical Mentor - Team #67 Electrical Mentor - Team #67 Electrical Mentor # Robot Schematic Document When Wiring a Team 67 Robot ### **Programming Assignment Sheet** to Inform Code Writers ### about Team 67's Robot Wiring | Motor Type | Motor Assignment | PD Circuit Breaker | Controller Type | Controller Name | RoboRIO Connection | Comments | Coast/Brake | |-------------|-------------------------|--------------------|-----------------|-----------------|--------------------|-----------|-------------| | CIM | Left Drive-Front | 40 Amp (PDP01) | Talon SR | LF | PWM 0 | MOTOR LF | Brake | | M7-RS775-18 | Left Can Burglar | 40 Amp (PDP00) | Talon SR | LCB | PWM 1 | MOTOR LCB | Brake | | CIM | Right Drive-Front | 40 Amp (PDP02) | Talon SR | RF | PWM 2 | MOTOR RF | Brake | | M7-RS775-18 | Right Can Burglar | 40 Amp (PDP03) | Talon SR | RCB | PWM 3 | MOTOR RCB | Brake | | M7-RS775-18 | Elevator - Left | 40 Amp (PDP15) | Victor SP | EL | PWM 4 | MOTOR EL | Brake | | M7-RS775-18 | Elevator - Right | 40 Amp (PDP14) | Victor SP | ER | PWM 5 | MOTOR ER | Brake | | M5-RS550-12 | Pickup Shoulder - Left | 30 Amp (PDP10) | Talon SRX | PSL | CAN BUS 11 | MOTOR PSL | Brake | | M5-RS550-12 | Pickup Shoulder - Right | 30 Amp (PDP04) | Talon SRX | PSR | CAN BUS 16 | MOTOR PSR | Brake | | M5-RS550-12 | Pickup Wrist | 30 Amp (PDP07) | Talon SRX | PW | CAN BUS 14 | MOTOR PW | Brake | | M5-RS550-12 | Pickup Roller - Left | 30 Amp (PDP08) | Talon SRX | PRL | CAN BUS 10 | MOTOR PRL | Brake | | M5-RS550-12 | Pickup Roller - Right | 30 Amp (PDP06) | Talon SRX | PRR | CAN BUS 15 | MOTOR PRR | Brake | | M5-RS550-12 | Intake Roller - Left | 30 Amp (PDP11) | Talon SRX | IRL | CAN BUS 12 | MOTOR IRL | Brake | | M5-RS550-12 | Intake Roller - Right | 30 Amp (PDP09) | Talon SRX | IRR | CAN BUS 13 | MOTOR IRR | Brake | | Digital Input | Feedback Data | RoboRIO DIO Connection | |---------------|------------------|------------------------| | Encoder Out A | Left Side Drive | DO DO | | Encoder Out B | Left Side Drive | D1 | | Encoder Out A | Right Side Drive | D2 | | Encoder Out B | Right Side Drive | D3 | | Encoder Out A | Shoulder | D4 | | Encoder Out B | Shoulder | D5 | | Encoder Out A | Wrist | D6 | | Encoder Out B | Wrist | D7 | | Encoder Out A | Elevator | D8 | | Encoder Out B | Elevator | D9 | ### Connection Notes: PWM 0 through PWM 5 in PWM Connections on the RoboRIO CAN BUS from RoboRIO, ended on Power distribution Board with Termination "ON" D O through D 9 in DIO Connections on the RoboRIO ### Notes for 4/7/2015 items: Added Left & Right Side Can Burglar Motor Added Left & Right Side Can Burglar Motor Potentiometers Added Gyro Evaluation Board Removed the Left & Right Side Bun Extension Motors **Update - Revision Notes** | Analog Input Feedback Data | | RoboRIO AIO Connection | |----------------------------|------------------------|------------------------| | Potentiomer AIO | Left Side Can Burglar | AI0 | | Potentiomer Al1 | Right Side Can Burglar | AI1 | | Miscellaneous | Power Input | Comments | | | |--------------------------|----------------------------------------------|-------------------------------------------------------------|--|--| | RoboRIO Power | [V] & [C] input connections | from dedicated Controller power on Power Distribution Panel | | | | Voltage Regulator Module | 12V IN | from dedicated VRM power on Power Distribution Panel | | | | Robot Radio | from Voltage Regulator Module (VRM) | connected to 5V @ 2A connections | | | | RODOT RADIO | | signal connection to RoboRio Ethernet connection | | | | Robot Signal Light | RSL Connection on RoboRIO | La to Lb jumper installed for steady operation | | | | Gyro Evaluation Board | This is wired to the MXP port on the RoboRIO | | | | | Miscellaneous | Power Input | | Comments | | | |--------------------------|----------------------------------------------|--|------------------------------------------------|----------------------------------------------|-------------------| | RoboRIO Power | [V] & [C] input connections | | from dedicated 0 | Controller power on Power Distribution Panel | | | Voltage Regulator Module | 12V IN | | from dedicate | ted VRM power on Power Distribution Panel | | | Robot Radio | from Voltage Regulator Module (VRM) | | connected to 5V @ 2A connections | | | | RODOT RADIO | | | signal coni | nection to RoboRio Etl | hernet connection | | Robot Signal Light | RSL Connection on RoboRIO | | La to Lb jumper installed for steady operation | | | | Gyro Evaluation Board | This is wired to the MXP port on the RoboRIO | | | | | ### Warning! Never, Never, wire with power applied! Always make sure that the positive and negative power leads are wired correctly! (Have another person check that they are correct) Always make sure that the control cables (PWMs, etc.) are connected correctly! (Have another person check that they are correct) # Electronic Standards used by Team #67 Wire Color and Dress - Red wires are positive DC voltage - Black wires are negative DC voltage - Chassis must not be used as a conductor - Install electrical and control wiring so that it is laid out logically and contained with jacketing, tie wraps, spiral tubing, shrink tubing or lacing cord - Protect your electrical control system from other robots NOTE: FIRST allows other colors of wires to be used – The listed standard is that used by Team #67 # Electronic Standards used by Team #67 Wire Gauge and Type Use only stranded wire with a high strand count for flexibility - Use 6 AWG wire for battery and main disconnect breaker power - Use 12 AWG wire for all motor power - Use 18 AWG wire for all other power wiring except: - Use premade standard RC PWM cables for motor control - Use premade cables for items like the Wireless Radio, Robot Signal Light or purchased CAN bus cables - Self-made CAN bus cable is 20AWG wire (Low-Green and High-Yellow) - All stranded wires should be tinned. See the next slide. - Tin a wire by applying the tip of a heated, cleaned and primed soldering iron to the stripped wire for a short time and then apply a small amount of 60/40 rosin core solder to the wire. Solder flows into the wire to fill the wire with solder. NOTE: FIRST allows other wire sizes to be used and does not require the wires to be tinned – The listed standard is that used by Team #67 ### How to Tin Stranded Wire - Strip the wire to the desired length. - Heat the soldering iron to the heat level needed for the wire size. Larger wires require a hotter soldering iron to complete the tinning process. - Make sure that the tip of the soldering iron is clean and pre-tinned. - Hold the soldering iron tip and solder together on the wire until a very small amount of solder begins to flow. - Move the soldering iron to the opposite side of the wire and flow a small amount of the solder into the strands of wire until half of the exposed length of the conductor is covered. ### Team #67 Motor Wiring - All motors, with the exception of servo motors, are wired with terminals/connectors from the Anderson PowerPole PP15/45 product line - Red 12 AWG Wire to Red Connector - Black 12 AWG Wire to Black Connector - Some motors have a red and black wire connected directly to the internal connections - Some motors have a red mark near an external terminal that is connected to the internal connections - Connect a 12 AWG red wire to this terminal - Connect the 12 AWG black wire to the other terminal ### 2015 FRC POWER SYSTEM ### Power System Components Cooper Bussmann CB185-120 Main Disconnect 120A Circuit Breaker Anderson SB50 (Red) Power Connector Yuasa NP18-12B Battery ## Power Distribution Panel from Cross the Road Electronics ## Interface Modules from Cross the Road Electronics **Pneumatics Control Module** Voltage Regulator Module ### National Instruments RoboRIO Controller with MXP Expansion Board ### 1-DIO Ports: - DIO Connections 0 thru 9 as shown and DIO connections 0 thru 13 on the MXP all have 40 kΩ pullup resistors to 3.3 V - DIO connections 14 and 15 on the MXP have 2.2 kΩ pullup resistors to 3.3 V ### 2-RS-232 Port: - RS-232 is a common serial interface connection. - NI RoboRIO has one UART (Universal Asynchronous Receiver/Transmitter) connected the RS-232 port. - The UART lines on the MXP are electrically identical to DIO lines 0 to 13 on the MXP. UART.RX and UART.TX have 40 k Ω pullup resistors to 3.3 V. - The RS-232 lines are compliant with TIA/EIA-232-F voltage levels. - Digital input and output (DIO) port - RS-232 port - I2C port - CAN port - Power connector - USB Device port - USB Host retention mount - USB Host ports - Ethernet port - 10 Serial peripheral interface bus (SPI) port - 12 Pulse-width modulation (PWM) port - myRIO Expansion Port (MXP) - 14 MXP retention mount - User and Reset buttons - Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### 3-I2C Port I²C is a serial interface used to connect I²C slave devices ### **4-CAN Port:** - Controller Area Network (CAN bus) is a vehicle bus standard designed to allow microcontrollers and devices to communicate with each other in applications without a host computer - It is a message based protocol, designed originally for multiplex electrical wiring within automobiles, but is also used in many other contexts. - The CAN bus used with the RoboRIO MUST be terminated at each end with 120 Ω resistors. One of the 120 Ω termination resistors is internal to the RoboRIO. - 1 Digital input and output (DIO) port - 2 RS-232 port - 3 I²C port - 4 CAN port - 5 Power connector - 6 USB Device port - 7 USB Host retention mount - 8 USB Host ports9 Ethernet port - 10 Serial peripheral interface bus (SPI) port - 11 LEDs - 12 Pulse-width modulation (PWM) port - 13 myRIO Expansion Port (MXP) - 14 MXP retention mount - 15 User and Reset buttons - 16 Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### **5-Power Connector:** Uses COMBICON Power Connector and MUST be connected directly to the Vbat CONTROLLER PWR connection on the Power Distribution Panel ### **6-USB Device Port:** Universal Serial Bus (USB) device port is used to deploy and debug code by connecting a USB cable from the USB device port on the NI RoboRIO to a computer. ### **8-USB Host Ports support these items:** - Web cameras that conform to the USB Video Device Class (UVC) protocol. - Machine vision cameras that conform to the USB3 Vision standard and are backward compatible with the USB 2.0 specification. - Basler ace USB3 cameras, USB Flash drives and USB-to-IDE adapters formatted with FAT16 and FAT32 file systems. - 1 Digital input and output (DIO) port - RS-232 port - 3 I2C port - 4 CAN port - 4 CAN port - Power connector USB Device port - 7 USB Host retention mount - 8 USB Host ports 9 Ethernet port - 10 Serial peripheral interface bus (SPI) port - 11 LEDs - 12 Pulse-width modulation (PWM) port - 13 myRIO Expansion Port (MXP) - 14 MXP retention mount - 15 User and Reset buttons - 16 Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### 9-Ethernet Port - Used to connect to an Ethernet network. - Use a standard Category 5 (CAT-5) or better shielded, twisted-pair Ethernet cable to an Ethernet hub, router, or directly to a computer. - Do not use a cable longer than 30 meters. - Port attempt to connect using a DHCP (Dynamic Host Configuration Protocol) connection. ### 10-SPI Port: - Serial Peripheral Interface (SPI) is an interface bus commonly used to send data between microcontrollers and small peripherals such as shift registers, sensors and SD cards. - Uses separate clock and data lines, along with a select line to choose the device which is being communicated with. - 1 Digital input and output (DIO) port - 2 RS-232 port - 3 I2C port - 4 CAN port - 5 Power connector - 6 USB Device port - 7 USB Host retention mount - 8 USB Host ports9 Ethernet port - USB Host ports - 10 Serial peripheral interface bus (SPI) port - 11 LEDs - 12 Pulse-width modulation (PWM) port - 13 myRIO Expansion Port (MXP) - 14 MXP retention mount - 15 User and Reset buttons - 16 Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### 11-LEDs - Used to indicate conditions of various functions of the RoboRIO They include: - POWER LED - STATUS LED - RADIO LED - COMM LED (Communication) - MODE LED - RSL LED (Robot Signal Light) - The LEDs have various states and colors that indicate various conditions and functions. These are defined in the NI RoboRIO user manual ### 12-PWM Ports - PWM Connections 0 thru 9 as shown have 6 V on the center pin which can be used to power servo motors - Shared PWM Connections 0 thru 9 on the MXP expansion Port only has 5 V power - All PWM signal connections have a 40 kΩ pulldown resistors to ground - 1 Digital input and output (DIO) port - 2 RS-232 port - 3 I2C port - 4 CAN port - 5 Power connector - 6 USB Device port - 7 USB Host retention mount - 8 USB Host ports - 9 Ethernet port - 10 Serial peripheral interface bus (SPI) port - 11 LEDs - 12 Pulse-width modulation (PWM) port - 13 myRIO Expansion Port (MXP) - 14 MXP retention mount - 15 User and Reset buttons - 16 Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### **13-MXP Connector** - Also called Custom Electronics Port - Allows access to signals in addition to those available on the standard interface. The signals include: - +3.3 V - +5 V - Analog Ground (1 Ports) - Digital Ground (7 Ports) - Analog Input (4 ports) - Analog Output (2 Ports) - DIO (16 Shared Ports) - PWM (10 Shared Ports) - SPI (1 Shared Port) - I2C (1 Shared Port) - UART Receive (1 Port) - UART Transmit (1 Port) - Various board configurations are available for teams to buy to get to these signals or a team can manufacture a board using info furnished by National Instruments. - 1 Digital input and output (DIO) port - 2 RS-232 port - 3 I2C port - 4 CAN port - Power connector - 6 USB Device port7 USB Host retention mount - 8 USB Host ports - 9 Ethernet port - 10 Serial peripheral interface bus (SPI) port - 11 LEDs - 12 Pulse-width modulation (PWM) port - 13 myRIO Expansion Port (MXP) - 14 MXP retention mount - 15 User and Reset buttons - 16 Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### **15-User and Reset Buttons** - User Button - Produces a logic TRUE when depressed and a logic FALSE when not - Reset Button - Pressing and releasing the Reset button restarts the processor and the FPGA (Field-programmable gate array) - Pressing and holding the Reset button until the status LED lights (about five seconds) and then releasing the Reset button restarts the processor and the FPGA and forces the RoboRIO into a safe mode. - In safe mode, it launches only the services necessary for updating configuration and installing software. - In the safe mode, communicate by using the RS-232 serial port. - 1 Digital input and output (DIO) port - 2 RS-232 port - 3 I²C port - 4 CAN port - 5 Power connector - USB Device port USB Host retention mount - 8 USB Host ports - 9 Ethernet port - 10 Serial peripheral interface bus (SPI) port - 11 LEDs - 12 Pulse-width modulation (PWM) port - 13 myRIO Expansion Port (MXP) - 14 MXP retention mount - 15 User and Reset buttons - 16 Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### **16-Analog Input Ports:** - Four single-ended channels can be used to measure 0-5 V signals - Channels are multiplexed to a single analog-to-digital converter (ADC) that samples all channels (including MXP). ### 17-Relay Ports: Relay ports all have 40 kΩ pulldown resistors to ground. There are 4 Forward controls and 4 Reverse controls. ### 18-RSL (Robot Signal Light Port): - Switched power output to drive RSL when RSL is enabled. The voltage level depends on the connected input voltage. RSL current is limited at 120 mA. - Wiring goes to an LED, so the polarity of the output is important. - 1 Digital input and output (DIO) port - 2 RS-232 port - 3 I²C port - 4 CAN port - 5 Power connector - 6 USB Device port - 7 USB Host retention mount - 8 USB Host ports - 9 Ethernet port - 10 Serial peripheral interface bus (SPI) port - 11 LEDs - 12 Pulse-width modulation (PWM) port - 13 myRIO Expansion Port (MXP) - 14 MXP retention mount - 15 User and Reset buttons - 16 Analog input (AI) port - 17 Relay port - 18 Robot signal light (RSL) port ### D-Link DAP-1522 (Revision B) Wireless Bridge - One D-Link DAP-1522 (revision B), configured with the appropriate encryption key for your team number at each event, is the only permitted device for communicating to and from the ROBOT during the matches. - Power must be supplied by the 5V/2A output of a Cross the Road Electronics Voltage Regulator Module (VRM) and must be the only load connected to those terminals. - Signal must be connected to the RoboRIO Ethernet port via a CAT5 or CAT6 Ethernet cable. Team 67 uses: CAT6 Shielded Patch Cord Molded with Boot & Bubble. It used stranded, shielded, twisted pair cable. - Wireless Bridge must be mounted such that the diagnostic lights are visible to ARENA personnel. - Make sure the DAP-1522 has the Mode switch set to the "Bridge" position before going on the field for any match. - Wiring configuration is shown on a later slide. ### D-Link DAP-1522 (Revision B) Wireless Bridge ### D-Link DAP-1522 (Revision B) Wireless Bridge Wiring ### Robot Signal Light Info and Wiring - ROBOTS must use at least one (1), but no more than two (2) diagnostic ROBOT Signal Lights (RSL) - The only acceptable RSL is Rockwell #855PB-B12ME522. Rockwell is the new owner of Allen Bradley products. - RSL MUST be: - Mounted on the ROBOT such that it is easily visible while standing three (3) feet in front of the ROBOT - Wired for solid light operation by placing a jumper between the "La" and "Lb" terminals on the light's removable connector. - Connected to the "RSL" terminals on the RoboRIO. A red wire needs to be connected from the leads that have the jumper wire to the "S" terminal on the RSL connector of the RoboRIO. A black wire is connected from the "N" pin on the RSL to the terminal with the Ground symbol on the RSL connector of the RoboRIO. # Motor Controller Wiring Notes used by Team #67 ALL Motor Controllers Power Input Wiring - ALWAYS make sure that the +POWER INPUT wiring (Spikes or Speed Controllers) have the Red wire (+ DC Voltage) to the positive input terminal and the -POWER INPUT wiring (Spikes or Speed Controllers) have the Black wire (- DC Voltage) to the negative input terminal - If the POWER INPUT WIRING is connected in reverse, the motor controller is very likely to be PERMANENTLY DAMAGED immediately when the power is applied to it - + DC Voltage connections are marked with 12V, +V, V+, or + - DC Voltage connections are marked with GND, -V, V-, or - a later slide. NOTES: -FIRST allows other colors of wires to be used – The listed standard is that used by Team #67 (See next slide for FIRST standards) -Special wiring is required when wiring a Servo motor. This is defined on # FIRST acceptable wire gauges and colors - Legal Wire Colors for use on robots per 2015 Competition/Game manual - Red, yellow, white, brown, or black-with-stripe on the positive (e.g. +24VDC, +12VDC, +5VDC, etc.) connections. - Black or blue for the common or negative side (-) of the connections. - Wires that are originally attached to legal devices are considered part of the device and by default legal. - Legal Wire Gauges for use on robots per 2015 Competition/Game manual | Application | Minimum Wire Size | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------| | 31 – 40A protected circuit | 12 AWG (2.052mm) | | 21 – 30A protected circuit | 14 AWG (1.628mm) | | 6 – 20A protected circuit | 18 AWG (1.024mm) | | Between the PDP dedicated terminals and the VRM or PCM | 18 AWG (1.024mm) | | Compressor outputs from the PCM | 18 AWG (1.024mm) | | Between the PDP and the roboRIO | 22 AWG (0.645mm) | | VRM 2A circuits | 22 AWG (0.645mm) | | ≤5A protected circuit | 22 AWG (0.645mm) | | roboRIO PWM port outputs | 26 AWG (0.404mm) | | SIGNAL LEVEL circuits (i.e. circuits which draw ≤1A continuous and have a source incapable of delivering >1A, including but not limited to roboRIO non-PWM outputs, CAN signals, PCM Solenoid outputs, VRM 500mA outputs and Arduino outputs) | 28 AWG (0.321mm) | # Motor Controller Wiring Notes used by Team #67 ### ALL Motor Controllers Power Output Wiring - Output wiring of the motor controllers is always marked to accommodate output consistency - The positive output connection on all controllers is labeled M+ - The negative output connections on all controllers is labeled M- - The output of the controller can be wired in a forward direction (M+ to M-) or a reverse direction (M- to M+) with no damage to the motor control device. The only affect will be the motor will run in the opposite direction - NOTES: -The normal wiring configuration used by Team #67 is to wire all motor controllers in a forward direction (M+ to M-). If needed, Team #67 typically reverses motor rotation in the programmed software code. - If two motors are controlled using the same PWM line and need to run in an opposite direction, then one motor would be wired in reverse. ### Motor Controller Wiring Notes ### **Control Signal Wiring to a Motor Controller** - Spike Motor Control Wiring - Connect the Spike using a standard RC PWM cable. - Connect the Black wire to the B PWM connection on the Spike and the other end to the Ground symbol on a selected Relay connection of the NI RoboRIO ### The Spike will function and display the control LEDs as listed in this table: | INP | UTS | OUTPUTS | | | | |----------|----------|------------|------------|-----------|-------------------------------------| | Fwd(Wht) | Rev(Red) | M + | M - | Indicator | Motor Function | | 0 | 0 | GND | GND | Orange | OFF / Brake Condition (default) | | 1 | 0 | +12v | GND | Green | Motor rotates in one direction | | 0 | 1 | GND | +12v | Red | Motor rotates in opposite direction | | 1 | 1 | +12v | +12v | Off | OFF / Brake Condition | ### Notes: - 'Brake' refers to the dynamic stopping of the motor due to the shorting of the motor inputs. This condition is not optional when going to an off state. - The INPUT Fwd and Rev are defined as follows: 0 (Off) and 1 (On). # Typical Spike Motor Controller Wiring to NI RoboRIO # Typical Servo Motor Wiring to NI RoboRIO # 2015 Motor Speed Controllers available for FRC robots Not used by Team #67 Texas Instruments Jaguar Not used by Team #67 VEX Robotics Or Victor 888 Used by Team #67 Cross the Road Electronic raion 5R Used by Team #67 Cross the Road Electronics Talon SRX Used by Team #67 Cross the Road Electronics Victor SP ### Motor Speed Controller Control Signals PWM and CAN bus Description ### PWM – Pulse Width Modulation PWM is a modulation technique used to encode a message into a pulsing signal. This is a 0 to 5VDC binary motor control signal with a 1.0mS to 2.0mS pulse width. This will be detailed on the next slide. This will proportionally control the Motor Speed Controller from full forward speed to full reverse speed. The Motor Controller Speed will be at zero motion (neutral state) when the pulse width is 1.5mS. ### PULSE WIDTH MODULATION (PWM) — SIGNALS IN VARIOUS CONDITIONS — FREQUENCY=1/TIME (IN SECONDS) = 50 HERTZ 20.0 m³ 2 CAN bus is a multi-master serial bus standard for connecting Electronic Control Units (known as nodes). Two or more nodes are required on the CAN network to communicate. All nodes are connected to each other through a two wire bus. The bus MUST be terminated at each end with 120 Ω resistors. The RoboRIO has an internal 120 Ω resistor to complete one end of the termination. CAN Cable ### Motor Speed Controller Control Signals ### PWM - Pulse Width Modulation - More Detailed Graphic ### Motor Speed Controller Wiring Notes ### **Control Signal Wiring to Motor Speed Controllers** - Victor 888, Talon SR or Victor SP use ONLY PWM Motor Control Wiring - Connect the Victor 888 using a standard RC PWM cable. Connect the Black wire to the B PWM connection on the Victor 888 and the other end to the Ground symbol on a selected PWM connection on the NI RoboRIO. - Connect the Talon SR using a standard RC PWM cable. Connect the Black wire to the B PWM connection on the Talon SR and the other end to the Ground symbol on a selected PWM connection on the NI RoboRIO. - The Victor SP has a standard RC PWM cable attached directly to the device. Connect the Black wire from the Victor SP to the Ground symbol on a selected PWM connection on the NI RoboRIO. The PWM cable length connected to the Victor SP is 17.8 inches. If the cable is too short, an extension can be added. ### Motor Speed Controller Wiring Notes (continued) #### **Control Signal Wiring to Motor Speed Controllers** - Talon SRX or Jaguars can use either PWM or CAN bus Motor Control Wiring - These devices MUST NOT be connected to both the PWM and CAN bus - To connect the Talon SRX to the PWM control, wire the cable attached directly to the device by using either of the green wires as the ground wire (normally black wire) and either of the yellow wires as the signal wire (normally white wire). Insulate the unused green and yellow wires. Then connect the green wire to the Ground symbol on a selected PWM connection on the NI RoboRIO. - To connect the Jaguar to the PWM control, use a standard RC PWM cable. Connect the Black wire to the - PWM connection on the Jaguar and the other end to the Ground symbol on a selected PWM connection on the NI RoboRIO. - CAN bus wiring on these two devices is detailed in three slides later in this presentation. ## Typical Motor Speed Controller Wiring using PWM Control ### Typical Motor Speed Controller Wiring using CAN bus Control Closeup Of PDP CAN bus Termination ## Motor Speed Controller Wiring notes (continued) CAN bus Control Signal Wiring with end Termination ## Motor Speed Controller Wiring notes (continued) #### CAN bus Control Signal Wiring to Talon SRX Motor Speed Controller After all of the Talon SRXs have been wired, there will be 2 remaining signal wires – connect these two wires using a 120Ω resistor or to the CAN interface on the Power Distribution Panel (PDP) to properly terminate the cable end. # Motor Speed Controller Wiring Notes (continued) CAN bus Control Signal Wiring to Texas Instruments Jaguar Motor Speed Controller ### Motor Speed Controller Wiring Notes (continued) #### Motor Speed Controllers Brake/Coast Mode - The Coast/Brake mode selects the dynamic behavior of the motor controller when decelerating or stopping. - In the Coast mode, the motor controller allows the current in the motor to decay slowly, providing a more gradual deceleration. - In the Brake mode, the motor controller uses switching to oppose current generated by the motor which results in much faster deceleration. The brake setting also provides some additional holding capability in the stopped position. - On the Jaguar, Victor 888 and the Talon SR, the Brake/Coast mode is set using a jumper. CAN bus network commands can override the jumper setting on the Jaguar. - On the Victor SP and Talon SRX, the Brake/Coast mode is set by pressing the B/C Cal pushbutton. When the status light is solid red, the controller is in the Brake mode. When the status light is off, the controller is in the Coast mode. The CAN bus network commands can override the jumper setting on the Talon SRX. ## Motor Speed Controller wiring notes used by Team #67 (continued) #### **Motor Speed Controllers Mode Jumper/Button Locations** #### **Texas Instruments Jaguar** #### **Talon SR** Victor SP Talon SRX # Motor Speed Controller wiring notes used by Team #67 (continued) #### **Motor Speed Controllers PWM Calibration Function** - The PWM calibration of a motor controller determines how to scale the PWM input signal to output voltage. Different motor controllers may have different "max" and "min" PWM signals that may not correspond to all of the motor controller outputs. Calibrating the motor controller allows it to adjust for these differences so that a "max" signal results in a "max" output. Calibrating can also correct issues caused by joysticks or gamepads with off-center neutral outputs. The motor controllers used by FIRST teams have a default calibration that is compatible with the NI RoboRIO control system. - by FIRST teams. There is a procedure defined in each of the motor controller's user guides and there is a definition of the visual display that indicates when the procedure was successful or when the procedure has failed. # Motor Speed Controller wiring notes used by Team #67 (continued) #### Motor Speed Controllers CAN bus interface connections - The Talon SRX and the Jaguar motor controllers that are wired to use the CAN bus have direct connectivity and a set of control options for multiple sensor interfaces. These can include analog inputs (such as potentiometers, etc.) and digital inputs (such as encoders, switches, etc.). - Sensors can be connected directly to the Talon SRX via the Data Port. The Talon SRX supplies the voltage and ground to the sensor devices. Do not supply external voltages or ground into the Data Port. The Data Port accepts a 2x5 0.05 inch pitch keyed cable that is available from many online retailers as well as VEX Robotics. - Sensors can be connected directly to the Jaguar MDL-BDC via the ANA, ENC and the FR connectors. These are used for Closed Loop Control of the Jaguar. The MDL-BDC software supports control and monitoring of only one sensor at a time. # - Sensors - Encoder Wiring to NI RoboRIO #### Common FIRST Encoder - US Digital E4P-250-250-N-S-D-D-B - E4P-250-250-N-S-D-B is a miniature incremental encoder that provides a quadrature output signal with these features: - 250 pulses per revolution (per phase) - 1/4" (0.250") mounting hole - No index - Single ended output - Default cover with no hole - Default base - Bulk packaging - Phase A leads Phase B signals by 90° when encoder is rotating clockwise (shown in the next slide) - Use a US Digital CA-MIC4-SH-NC-(# of Feet) cable to connect the encoder. It has a 4-Pin Micro Connector with an Unterminated, Shielded Cable that is wired as shown in a later slide # - Sensors - Encoder Output Signals Common FIRST Encoder - US Digital E4P-250-250-N-S-D-D-B | Parameter | Тур. | Max. | Units | |---------------------|----------|----------|--------------------| | Symmetry, S | 180 ± 16 | 180 ± 75 | electrical degrees | | Quadrature Delay, Q | 90 ± 10 | 90 ± 60 | electrical degrees | ⁽¹⁾ A leads B for clockwise shaft rotation, B leads A for counter clockwise shaft rotation viewed from the cover/label side of the encoder. # - Sensors - Encoder Wiring to NI RoboRIO #### - Sensors -Switch Wiring to NI RoboRIO #### - Sensors -Team 67's #### Potentiometer Information **Rotary Potentiometer** **Linear Potentiometer** - Always use linear taper devices - Always use resistance values between $10k\Omega$ and $100k\Omega$ - Independent linearity tolerance must be <2% (lower = more accurate) - Use conductive plastic element technology for infinite resolution - Rotary potentiometers come in single turn or multiple turn configurations # - Sensors Potentiometer Wiring to NI RoboRIO # - Sensors Rockwell Light Sensor to NI RoboRIO #### **Crimp Terminals** used by Team #67 - Team #67 only uses uninsulated crimp terminals in these types and sizes: - **Butt Splice Connectors (12-10 AWG)** - **Butt Splice Connectors (22-18 AWG)** - Quick Disconnect 1/4" Female (12-10 AWG) - Quick Disconnect 1/4" Female (12-10 AWG) 90° - Quick Disconnect ¼" Male (12-10 AWG) - Ring Terminals #6 Screw (12-10 AWG) - Ring Terminals #6 Screw (22-18 AWG) - Ring Terminals #6 Screw (26-22 AWG) - Ring Terminals 1/4" Screw (6 AWG) - Ring Terminals 1/4" Screw (12-10 AWG) - Fork Terminals #6 Screw (12-10 AWG) - Fork Terminals #6 Screw (22-18 AWG) - Anderson PowerPole Terminals #261G2-LPBK - Anderson SB-50 Connector Terminal (6 AWG) - **Barrel Crimp terminals are always covered** with shrink tubing **Butt Splice** Connectors **Power Pole** Terminal **Terminal** 90° Female Quick Disconnect Quick Disconnect Quick Disconnect **Terminal** Male **Terminal** Fork Terminal Ring **Terminal** SB-50 **Terminal** ## Crimping Tools for Electrical Work on a Robot - Always use the correct tool that is designed to crimp the type of terminals and the wire size being crimped. - Always set the split side of the crimp barrel into the saddle side of the crimpers - Strip wire to the correct length. Correct length is defined for each type of crimp terminal. Wire insulation must touch the barrel, but must not be inserted into the crimp barrel. MSC Industrial Supply Co. #03131315 (21 ¼" long) 2-8 AWG terminal crimper For battery terminals Thomas and Betts #W111M 22-10 AWG (13" long) uninsulated terminal crimper for barrel terminals Powerwerx TRIcrimp Crimpers for Terminals Used in PowerPole Connectors ### Shrink Tubing used by Team #67 - ➤ Team #67 normally uses 2:1 shrink ratio tubing in these colors and sizes: - Red $-\frac{3}{32}$ ", $\frac{1}{8}$ ", $\frac{1}{4}$ ", $\frac{3}{8}$ " and $\frac{1}{2}$ " diameter - Black $-\frac{3}{32}$ ", $\frac{1}{8}$ ", $\frac{1}{4}$ ", $\frac{3}{8}$ " and $\frac{1}{2}$ " diameter - Green $-\frac{1}{4}$ " diameter - Yellow $-\frac{1}{4}$ " diameter - White $-\frac{3}{32}$ " diameter - Nominal cut length is ¾", but length varies with specific application - Team 67 uses colored electrical tape for insulation repairs or places that shrink tubing can not be used #### Tools for Electrical Work on a Robot #### Wire Strippers – Good Choices - Always use the correct wire stripper for the size (AWG) and the type (stranded or solid) of wire being stripped - Make sure the wire stripper being used has a sharp cutting tool Ideal #45-121 T-6 T-Stripper 16-26 AWG stranded wire Ideal #45-124 T-8 T-Stripper 8-16 AWG stranded wire Klein Kurve® #11053 Wire Cutter/Stripper 6-12 AWG stranded wire #### **Tools for Electrical** Work on a Robot - Heat Gun No open flame devices are allowed in the pit area at any competition. - Wago tool or long slotted screwdriver to insert wires into spring loaded terminals - Needed on RoboRIO controller, PDP, PCM and VRM SparkFun Heaterizer #XL-3000 heat gun Wago Tool No longer available Similar to Kohler tool Snap On Screwdriver 0.32" Flat Tip 14 5/32" long ### Battery Charger used by Team 67 AndyMark, Inc. #AM-2026 Lead Acid Battery Charger, 3 Bank, 6 Amp, Dual Pro RS3 with SB-50A Connectors # Battery Power Items to Check Before Going to the Competition Field #### Always! - Don't forget to install a fully charged battery - Check the battery condition by measuring it with a Cross the Road Electronics Battery Beak - →Plug it into the Anderson SB-50 connector, turn ON the Battery Beak and make sure the orange portion of the display shows STATUS: Good and CHARGE: ≥ 110% - Make sure the battery is PROPERLY SECURED - Verify that the battery terminals are fully insulated - Make sure the power connector is fully engaged ### Thanks for much information which #### was found at these locations - Andymark, Inc. - → http://www.andymark.com/ - Cross the Road Electronics - → http://www.ctr-electronics.com/ - FIRST website - → http://www.USFIRST.org/ - National Instruments - → https://decibel.ni.com/content/community/academic/student_competitions/frc - VEX Robotics - → http://www.vexrobotics.com/ - Miscellaneous manufacturer's websites for datasheets and information - Chief Delphi forums for community information - Much good reference information can be found at http://team358.org/files/programming/ControlSystem2015-2019/ - 2006 PowerPoint presentation by Chris Noble (Team 1018 [at that time]) and Darrell Noble (Team 71 [at that time]) # Very Important Closing Comments - →A neat robot is a safe, reliable robot! - →Read ALL of the Rules and ALL of the game manual and follow the rules completely. - If you're not sure, ask your mentor, the FIRST organization advisors and/or another team. - Remember, the only bad question is the one you don't ask!